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Abstract
This paper examines the empirical implications of aggregation bias when measuring the
productive impact of computers.  To isolate two specific aggregation problems relating to
“aggregation in variables” and “aggregation in relations,” we compare various production
function estimates across a range of specifications, econometric estimators, and data levels.  The
results show that both sources of bias are important, especially as one moves from the sector to
the economy level, and when the elasticity of all types of non-computer capital are incorrectly
restricted to be equal.  In terms of computers, however, the estimated elasticity is surprisingly
stable between industry and sector regressions and does not appear to be biased by the
incorporation of a restrictive measure of non-computer capital.  The data consistently show that
computers have a large impact on output.
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 I.  Introduction

Economic research relies heavily on aggregated data and there are good reasons for this.

Aggregation combines details to give a clearer picture of performance.  It also simplifies analysis

because it is much easier to work with a small set of aggregate variables than to try to model the

myriad of details that lie beneath.  A third reason is that aggregation enables survey

organizations to collect data in broad categories, which limits processing and collection costs.

Finally, aggregation protects confidential micro-data, although this is becoming less important as

new institutions are developed to maintain secrecy while still allowing access by researchers.

Aggregation, however, also has important problems and the possibility of systematic bias

from the use of aggregate data has long been recognized.  In an early paper, Theil (1954)

formally examined the possibilities for biased estimates of economic relationships when

aggregates were used in place of information on individuals or firms.  Similarly, the long debate

over the “existence” of an aggregate production function or an aggregate measure of capital is

essentially about the difficulties when using aggregate data and relationships to represent the

underlying microeconomic production relationships.1  While much has been learned about how

aggregation should be done and what conditions are required for meaningful aggregates, e.g.,

Diewert (1976), aggregation remains an important issue.

The recent availability of micro-data, for example, has led to a host of studies

documenting widespread differences in the characteristics of economic units within seemingly

homogeneous groups or industries, e.g., Baily, Hulten, and Campbell (1992), Jensen and

McGuckin (1996), and Haltiwanger (1997).  Arguably, the common practice of using a

“representative firm” model to justify use of aggregates is not appropriate in these situations and

recent empirical work supports this in a wide variety of situations, e.g., productivity growth,

investment dynamics, and employment movements as surveyed in Haltiwanger (1997).  As a

concrete example of how aggregation may be misleading, McGuckin and Nguyen (1999) find an

impact of ownership change on productivity in plant-level data, but the relationship becomes

obscured when firm-level observations are used.

This paper examines the empirical implications of using different types of aggregate data

in a specific context – measuring the productive impact of computers.  This application is of
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particular interest in light of the widespread discussion and controversy concerning the so-called

“computer productivity paradox.”  This puzzle can be traced to the 1987 observation by Robert

Solow that, although computers were becoming ubiquitous, aggregate productivity remained

sluggish.  One potential explanation was presented by Oliner and Sichel (1994) and Sichel

(1997), who emphasized that computers represent a relatively small portion of economy-wide

capital.  Since computer capital was small, it is not surprising that it did not have a large impact

on aggregate productivity or growth in earlier years.2

While certainly true in an aggregate growth accounting framework, this doesn’t explain

the disparity of findings at lower levels of aggregation that analyzed data for same period of the

1980s and early 1990s.  Berndt and Morrison (1995), for example, found that computers were

having little impact on productivity in the 1980s, while Morrison (1997) reports evidence of

over-investment in high-tech capital.  In contrast, Brynjolfsson and Hitt (1995), Lehr and

Lichtenberg (1999), and Lichtenberg (1995), Siegel (1997), and Steindel (1992) found that

computers had a significant impact on productivity and output.

One factor that may be contributing to this divergence is the different degree of

aggregation across studies.  The purpose of this paper, therefore, is to use a common econometric

approach and dataset to isolate the impact of aggregation effects.  By comparing econometric

results using the same specification at three distinct levels of aggregation – the private business

economy, 10 major sector groups, and 55 detailed industries – we can quantify the importance of

bias from “aggregation of relations” problems.3  Similarly, by comparing estimates from

different decompositions of capital, we can quantify the importance of bias from “aggregation of

variables” problems.

We begin by documenting widespread differences in computer intensity across business

sectors and component industries.  We then use a continuous measure of computer intensity –

measured either as the stock of computer capital or the share of equipment capital in the form of

computers – in various production function specifications.  Comparison of the estimated

                                                                                                                                           
1Fisher (1992) provides details on both capital and production function aggregation and Jorgenson (1990) discusses
the stringent assumptions needed to move from a sectoral production function to an aggregate production function.
2More recent estimates for the late 1990s in Jorgenson and Stiroh (2000b) and Oliner and Sichel (2000) show that
information technology played an important role in the U.S. productivity revival.
3Note, however, that data limitations prevent us from extending this comparison to include analysis of aggregation
effects that move from the firm or plant level to the industry level.  Micro-data is available for manufacturing
industries from the Longitudinal Research Database (LRD), but is not available outside of manufacturing.
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elasticity from the different regressions provides important insights about the relationship

between computers, productivity, and output and the importance of aggregation effects.

Our results suggest that both sources of bias are important in general, although the

estimated computer elasticity is surprisingly robust across different levels of data and alternative

specifications.  The level of aggregation has a direct impact on the estimated elasticity of certain

types of capital, most notably structures, while the decomposition of non-computer capital

matters because the marginal products of different types of capital are clearly not equal.

In terms of computers, the estimated elasticity is quite large and stable, typically in the

range of 0.15 to 0.20, across both the industry and the sector regressions and does not appear to

be biased by the use of a restrictive measure of non-computer capital.  Since computers

experience rapid depreciation and large capital losses due to obsolescence, they must earn a large

gross rate of return to cover these costs; this explains the relatively large output elasticity for

computers.  We conclude that despite the presence of aggregation bias, previous estimates of a

large elasticity of computers appear reasonable and are entirely consistent with economic theory.

 II. General Approach

Research on computers and productivity has generally followed two empirical traditions.

Jorgenson and Stiroh (2000b, 1999, 1995), Sichel (1999), Haimowitz (1998), Stiroh (1998), and

Oliner and Sichel (2000, 1994) use growth accounting techniques to compare the growth rate of

output to the share-weighted growth rates of inputs and estimate the contribution of each input to

economic growth.  In contrast, Gera, Gu, and Lee (1999), Lehr and Lichtenberg (1999),

Morrison (1997), Siegel (1997), Berndt and Morrison (1995), Brynjolffson and Hitt (1995),

Lichtenberg (1995), and Steindel (1992) estimate production or cost functions for firms or

industries that explicitly include some measure of computer capital or computer-related labor.4

The empirical work typically begins with a production function such as:

(1) ),,,( ,,,, iLKKfAY ti
other
ti

computer
titti ⋅=

where Yi,t is output, computer
tiK ,  is capital in the form of computers, other

tiK , is other capital, and Li,t is

labor for firm, industry, or sector i at time t.  At represents total factor productivity (TFP) or

disembodied technical change that depends solely on time.

                                               
4Brynjolfsson and Yang (1996) survey this field.
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The econometric studies take some version of Equation (1), assume a functional form,

transform the relationship into a regression, and estimate that regression with the data at hand.

Our empirical work follows this tradition and estimates alternative specifications of Equation (1)

at different levels of aggregation using several different econometric estimators in order to

quantify the importance of two different types of aggregation errors.5

(a) Aggregation Issues

Broadly speaking, aggregation bias is a special case of specification error, but

ascertaining the bias in any particular application is not straightforward.  Maddala (1977) divides

the topic of aggregation bias into two broad sets of questions – problems in the “aggregation of

variables” and problems in the “aggregation of relations.”  We examine both issues and, although

we do not formally derive or model these aggregation biases here, it is useful to put our

comparisons in this context.  See Maddala (1977) for details.

Aggregation of variables includes the whole area of index number construction in which

an index variable is created to represent the movement of a set of prices or quantities over time.

This area has a rich history and we focus on one example relating to incorrectly specifying the

production function inputs.

To fix ideas, consider the example in Lichtenberg (1990) where the true structural

relationship is uXXy ++= 2211 ββ , but the econometrician incorrectly estimates

εβ ++= )( 21 XXy .  Lichtenberg shows that the probability limit of the estimate of β is a

weighted average of β1 and β2, but the weights need not be between zero and one so perverse

effects are possible.  In his empirical application, Lichtenberg (1990) examines the consequences

of using an aggregate measure of research and development (R&D) in place of a disaggregated

specification that explicitly includes federal government R&D and private R&D.  Since the

productivity impact of federal R&D was less than private R&D, the estimated impact of

aggregate R&D understated the true impact.6  Aizcorbe (1990) makes an important contribution

to this literature by developing tests of the validity of particular aggregates in the context of

generalized production functions that are discussed below.

                                               
5Some authors, e.g., Lichtenberg (1995), also decompose labor into a information technology and non-information
technology portion.  He finds evidence of excess return to labor associated with information technology.
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Aggregation of relations includes many issues that deal with the interaction between

micro- and macro-relationships.  The seminal work of Theil (1954) studied one specific case

dealing with the conditions needed for the preservation of the parameters of micro-relations

when estimation is carried out using macro-variables.7  We examine a very specific form of this

question and compare differences in the coefficients of the same production function that are

estimated at various levels of aggregation.  Morrison-Paul and Siegel (1999) undertake a similar

exercise in the context of measuring economies of scale in manufacturing and find that the

aggregation bias from moving between 4-digit, 2-digit, and total manufacturing data is not

substantive.

In the case of computers and productivity, we speculate that both types of aggregation

issues are important.  Regarding aggregation of variables, the marginal productivity of different

forms of capital can be quite varied so aggregating heterogeneous types of capital may be an

important source of bias.  For example, econometric work that simply includes an aggregate

measure of “non-computer capital” as in Equation (1) may generate the exact bias described by

Lichtenberg (1990).  Regarding aggregation of relations, both production structure and computer

intensity vary widely across industries and combining these disparate industries into aggregates

may lead to biased coefficient estimates.  Thus, the level of aggregation may have a direct impact

on the estimated parameters of a production function and create a misleading picture of the

productive role of computers.

(b) Econometric Framework

The remainder of this section outlines three related empirical specifications that can be

used to examine how production function coefficients vary when they are estimated with

different data.  In particular, we focus on how the estimated elasticity of computer capital

changes across different decompositions of capital (aggregation of variables) and across different

levels of aggregation (aggregation of relations).

                                                                                                                                           
6The true coefficient of the aggregate variable is a weighted sum (equal to 1.0) of the true coefficients for the
individual impacts with the bias depending on the ratio of the variances of each component of aggregate R&D and
the correlation between the individual components.  See Lichtenberg (1990) for details.
7There is a technically similar class of problems that Madalla (1977) includes in aggregation of relations.  These
problems question whether aggregate or micro based relationships give the “best” prediction or forecast when both
types of variables are available.  We do not investigate this.
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i) Simple Production Function

In the empirical literature on the role of computers, it is standard practice to decompose

capital into two parts – computer capital and non-computer capital as in Equation (1) – and

econometrically estimate a production function.  A common Cobb-Douglas specification, for

example, yields the following model:

(2) εβββϕ eKKLeeY nc
itA ⋅⋅⋅⋅⋅= 210)()(

where L is labor, Kc is computer capital, Kn is non-computer capital, A(t) and ϕ(i) are general

time and industry variables that simply shift the production function, but do not interact with the

inputs, and ε is a random error term.8

To estimate Equation (2), take logs and include time and industry effects as dummy

variables, T and I, to allow flexibility in A(t) and ϕ(i), respectively.  This implies the following

simple production function regression:

(3) εθθβββα ++++++= ITKKLY itnc lnlnlnln 210

This regression provides the first way to estimate the impact of computers on output and

productivity.  Specifications of this type are common in the literature, e.g., Brynjolfsson and Hitt

(1995), Lichtenberg (1995), and Steindel (1992).9

We emphasize that while Equation (3) isolates computers from other forms of capital,

there are still problems relating to aggregation of variables.  Kn contains many heterogeneous

assets across many vintages, e.g., cars, structures, and machines tools, that likely do not have the

same elasticity.  Moreover, Kc is an aggregate that includes mainframes, personal computers,

displays, printers, storage devices, and other peripheral equipment and these components may

have different production characteristics that may make aggregation inappropriate.  We do not

focus on bias at this level to provide comparability with earlier studies and to maintain

tractability of our results.10

                                               
8Time and industry subscripts have been dropped from the inputs and outputs for ease of exposition.
9Under the assumption of constant returns to scale, it is straightforward to transform this output regression to a labor
productivity regression and this has been done in several of the studies cited.  We estimated these types of labor
productivity regressions and found similar results, so we focus on the output level regressions.
10There are also important differences across vintages for each detailed asset, e.g., faster processor speed in more
recent personal computers.  The BEA data, however, account for these vintage differences through constant-quality
price deflators that implicitly makes investment across vintages perfect substitutes and allows aggregation across
vintages.
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ii) Extended Production Function

The implicit assumption in the simple production function of Equation (2) is that all

forms of non-computer capital are perfect substitutes and have the same output elasticity.  To

examine the impact of this assumption, we consider a more general production function that

explicitly includes four types of capital – computer capital, Kc, other high-tech equipment, Kh,

other equipment, Ko, and structures, Ks – and allows the output elasticity to vary across each asset

class.  As shown in Lichtenberg (1990), incorrectly imposing a common elasticity can lead to

biased estimates due to the aggregation of variables problem.

The extended production function, again in Cobb-Douglas form, is:

(4) εβββββϕ eKKKKLeeY sohc
itA ⋅⋅⋅⋅⋅⋅⋅= 43210)()(

which implies the following extended production function regression:

(5) εθθβββββα ++++++++= ITKKKKLY itsohc lnlnlnlnlnln 43210

The regression in Equation (5) provides a second way to evaluate the impact of

computers.  By allowing a more general specification that removes a particular form of

aggregation error, these regressions may provide better estimates of the impact of computers.

Moreover, by comparing the estimated elasticities from Equation (3) to the estimated elasticities

from Equations (5), we can directly assess the practical importance of the aggregation of

variables bias.

iii) Alternative Production Function

The two approaches described above estimate the impact of computers by explicitly

decomposing capital into different types.  As an alternative, we also examine a specification

similar to Berndt and Morrison (1995) and Lehr and Lichtenberg (1999).  This approach uses

capital shares to identify differences in the productive impact of equipment capital in general and

computer capital in particular.

Consider the slightly modified Cobb-Douglas production function:

(6) 10 *)( ββ KLAY ⋅=

where K* is “effective” capital that is measured as:

(7) 
γδ









⋅







⋅=
e

ce

K

K

K

K
KK*

so that:
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where Ke is total equipment capital and Kc is computer capital.

Aizcorbe (1990) provides a formal justification and defense of this type of approach.  She

shows that, under reasonable conditions, a general production function ),,( 21 KXXXfY K= can

be restated as ),,,( 121 −= KMMMXfY K  where X is some aggregate of the individual inputs

and ),( Kiii XXMM = is a “mix function” that relates the two arguments.  To test if the

aggregate X is valid, one can test if i
M

Y

i

∀=
∂
∂

,0 .

In this framework, δ and γ measure the compositional effects associated with different

types of capital.  That is, δ>0 implies that a larger proportion of capital in the form of equipment

increases the amount of effective capital relative to the measured aggregate.  Likewise, γ>0

implies that a larger proportion of equipment in the form of computers increases the effective

amount of capital.

Note that this specification only captures composition effects since individual capital

stock series are calculated with quality-adjusted price indexes for computers to account for

improvement embodied in more recent vintages and all series are aggregated using a Divisia

index.  Thus, vintage differences and traditional index number problems are eliminated.

Combining Equations (6) and (8) yields the following alternative production function

regression:

(9) εθθγβδβββα +++







+







+++= IT
K

K

K

K
KLY it

e

ce
1110 lnlnlnln

Again, the interpretation of δ and γ is clear.  If equipment and computer capital do not

have any differential impact and the composition of the capital stock does not matter, then

δ=γ=0.  If this is true, then β1δ=β1γ=0 in Equation (9).  Conversely, if composition effects do

matter, then the estimated coefficients on the shares will be statistically significant different from

zero (assuming the β1≠0 as implied by standard production theory).  Of course, the coefficients

on the two shares need not be the same and none, either one, or both of the share effects could

matter.



9

The regressions in Equations (3), (5), and (9) provide the means for assessing the

practical important of biases from aggregation of variables and aggregation of relations.  That is,

by comparing estimates from the simple production function to the extended or alternative

production functions, we can assess the bias created from a restrictive measure of capital

(aggregation of variables).  Likewise, by estimating each regression at differ levels of

aggregation, e.g., industry, sector, and private business economy, we can assets the bias from

incorrectly imposing the same relationship (aggregation of relations).

 III. Data Sources and Construction

Data comes from the Bureau of Economic Analysis (BEA) and include gross product

originating (GPO) by industry and capital stock by industry and asset.

(a) BEA Gross Product Originating

Gross product originating (GPO) represents each industry’s contribution to gross

domestic product as calculated by BEA.  These data, also called value-added data, equal gross

output less intermediate inputs and thus equal payments to labor and capital.  The GPO data

include current and chain-weighted constant dollar data for 62 detailed private industries.  The

current dollar GPO is from 1948 to 1996, while the constant dollar GPO is only from 1977-1996.

Data on full-time equivalent employees, FTE, is available for the same industries from 1947-

1996.11  Details are provided by Lum and Yuskavage (1997), Lum and Moyer (1998), and

Yuskavage (1996).

(b) BEA Tangible Wealth Survey

Investment and capital stock are estimated by the BEA as part of their Tangible Wealth

study (BEA (1998)).  These data include current dollar net capital stocks and corresponding

chain-weighted quantity indexes for 62 private industries and 57 assets from 1947 to 1996.

Details on the estimation and data sources can be found in Katz and Herman (1997) and these

data correspond to those reported in the September 1997 Survey of Current Business.

(c) Creating Consistent Data

The data used in this paper represent consolidated data based on 1987 SIC codes. To

focus on the private business economy, we excluded government enterprises, general

                                               
11As a consistency check, we compared alternative labor series available from the BLS and hours by industry data
from Gullickson and Harper (1999) and found very high correlations.
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government, real estate, and private households from our econometric analysis.  Aggregation of

output and capital stocks was done as a Divisia quantity index, which has the desired exact

aggregation properties, while labor series are simple sums.  This procedure resulted in 55

detailed industries that comprise 10 major sectors with data on gross product originating, labor,

and capital stock by asset.

To measure the composition of the capital stock, we created several aggregates from the

detailed capital stock series.  Computers include mainframes, personal computers, direct access

storage devices, printers, terminals, tape drives, and other storage devices.  Other high-tech

equipment includes communications equipment, instruments, and photocopy equipment.  Other

equipment includes all other producers’ durable equipment.  Structures include all non-

residential structures.  Thus, our capital measure excludes residential structures, land, and

inventories and includes only fixed, reproducible tangible assets owned by the business sector.

(d) Descriptive Statistics

Table 1 shows the evolution of computer capital for major sectors and the detailed

industries from 1970 to 1996.  These data show the rapid accumulation of computers throughout

the economy as documented in the aggregate work of Jorgenson and Stiroh (2000b) and Oliner

and Sichel (2000).12

More important for our purposes, there is wide variation across major sectors and

industries.  The private business sector shows a nominal computer share in the capital stock of

1.8% in 1996, for example, while only 0.002% of farm capital is computers but more than 20%

of business services capital is in the form of computers.  Even within major sectors like services

or manufacturing, there is substantial variation in computer shares of the total capital stock.

Table 1 also shows wide variation in the accumulation rates of computers across major

sectors, ranging from 8.34% in mining to 28.84% in wholesale trade in the 1990s.  These growth

rates far exceed the growth in other forms of capital, typically by a factor of 10.  Again, variation

widens significantly at lower levels of aggregation and remains large within major sectors.  Since

capital stocks are calculated using the same methodology and the same underlying deflators, this

reflects enormous differences in investment patterns across industries.

                                               
12These studies use a later vintage of capital data and are thus not directly comparable to these industry estimates.
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Table 2 presents the distribution of capital by type – computers, other hi-tech, other

equipment, and structures – within major sectors and detailed industries.  As expected, there is

wide variation in all forms of capital since different industries have fundamentally different

production techniques.  This suggests that the simple production function approach may be quite

misleading since it does not account for the wide heterogeneity in capital.

Table 3 presents the distribution of capital in a different way by reporting the distribution

of total computer and hi-tech capital across major sectors.  As reported in Triplett (1999) and

Stiroh (1998), computers are highly concentrated in service-related sectors with wholesale trade,

retail trade, finance insurance and real estate, and services owning over $120 billion dollars of

computer equipment, which accounts for over 78% of the U.S. business total.  Manufacturing, on

the other hand, holds only $26 billion or 17% of the total.

 IV. Production Function Estimates

Our empirical results focus on three regressions – Equations (3), (5), and (9) – that are

estimated at different levels of aggregation with different econometric methods.  The structure of

aggregation coincides with Tables 1 and 2 and includes three nested levels.  “Aggregate” is the

private business economy,13 which consists of 10 major “sectors,” which in turn consist of 55

detailed “industries” at roughly the two-digit SIC level.  All aggregation is done with a Divisia

index so the 55 detailed industries sum to the 10 major sectors and the 10 major sectors sum to

the aggregate in current dollars.14

We estimate the production functions in several different ways.  We first perform

ordinary least squares (OLS) on the aggregate, sector, and industry data.  These regressions

include year dummy variables for the sector and industry regressions and a linear time trend in

the aggregate regression.  We then estimate a traditional fixed effect (FE) specification that

allows each industry or sector to have a unique intercept to account for unobserved

heterogeneity.  Since the aggregate data is a single series and cannot be estimated using the panel

methods, only an OLS estimate is reported.

While regressions of these types are quite common in the literature, there are important

econometric concerns.  There is an endogenity problem since output and inputs, particularly

                                               
13Real estate and private households are not included.
14The series do not sum exactly in constant dollars, which is an artifact of Divisia aggregation.  A similar property
exists in the new chain-weighted indexes in the national accounts.  See Landefeld and Parker (1997) for details.
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variable inputs such as labor, are likely to be chosen simultaneously.  There is also an omitted

variable problem since we cannot observe all factors that determine output or productivity, e.g.,

technology, research and development, efficiency, and input quality.  Inclusion of fixed effects in

a panel framework can control for unobservable factors that are constant over time, but to the

extent that unobservable factors vary and are correlated with particular inputs, those coefficients

will be biased.  Finally, there are multicollinearity issues since all inputs are likely to be

correlated, particularly at higher levels of aggregation with less cross-sectional variation.15

To control for both the unobserved heterogeneity and simultaneity problems, we employ

more sophisticated econometric tools developed by Arellano and Bover (1995) and Blundell and

Bond (1998), and applied to production function estimates by Blundell and Bond (1999).  Their

system generalized method of moments (SYS-GMM) estimator utilizes a combination of

regressions in levels and first-differences with several lagged first-differences as instruments for

the equations in levels and several lagged levels as instruments for equations in first-differences.

Simulation results in Blundell and Bond (1998) show this estimator offers efficiency gains

relative to the basic first-differenced GMM estimator.16

A second data limitation forces us to use a measure of capital stock rather than the

preferred flow of capital services.  This difference has been recognized at least since Solow

(1957) and has been an important part of the growth accounting literature.  Ho, Jorgenson, and

Stiroh (1999) provide details on the conceptual and empirical distinction.

A final issue is our use of gross product originating as the output concept.  Ideally, we

would prefer to use a measure of gross output, which includes the value of intermediate inputs,

but we did not have the corresponding data for intermediate inputs.  Such is data is available for

manufacturing industries, e.g., the NBER Grey-Bartelsman database, or for relatively high levels

of aggregation, e.g., Jorgenson and Stiroh (2000a), but they do not provide the comprehensive

                                               
15Griliches and Mairesse (1998) provide a detailed review of the econometric difficulties associated with production
function estimation and common approaches designed to mitigate the problems.
16The SYS-GMM estimator was generated using the DPD98 Gauss software described by Arellano and Bond
(1998).  All reported SYS-GMM estimates are from the one-step GMM estimator, with standard errors corrected for
heteroskedasticity.  To avoid over-fitting biases that are possible in our relatively small cross-sectional samples, we
report estimates with two lags for the instruments in the sector regressions and three lags in the industry regressions.
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coverage of computer-intensive industries or the nested levels of disaggregation required for this

exercise.17  With these caveats in mind, we proceed to the empirical results

(a) Simple Production Function

Table 4 reports estimates of the simple production function in Equation (3) for different

levels of aggregation and econometric methods.  For the most part, the sector and industry results

are reasonable with a large, positive, and significant coefficient on labor in the 0.5 range and

capital coefficients that are typically statistically significant.18  Consistent with Blundell and

Bond (1999), the FE (within) estimator produces coefficients that appear to be biased downward,

while the SYS-GMM estimators are more reasonable.  In both the sector and industry SYS-

GMM regression, the coefficient on computer capital is large and statistically significant.

The estimates of the computer elasticity are typically around 0.2 in the OLS and SYS-

GMM models, somewhat larger than earlier estimates in Brynjolfsson and Hitt (1995) and

Lichtenberg (1995).  Those papers estimate a similar regression with firm-level data for earlier

periods and report a statistically significant elasticity for computer capital in the range of 0.05-

0.12.  The larger impact in our data likely reflects the growing importance of computers in our

sample relative to their earlier samples.

The large change in coefficients when sector or industry dummy variables are included in

the FE estimates suggests that deviations in output over time from the mean for a particular

sector or industry are not highly correlated with deviations in computer capital.  Similarly, the

elasticity of non-computer capital falls and is actually significantly negative at the industry level.

This is unexpected, although low and insignificant capital coefficients in FE regressions are

common in empirical work and motivated the move to the more sophisticated GMM approaches.

Griliches and Mairesse (1998), particularly pg. 178, discuss this phenomenon and suggest that

the loss in variance of the right-hand side variables is responsible as other errors like

measurement and random noise dominate the remaining information.

In general, there appear to be small differences in the estimated coefficients when the

industry and sector level regressions are compared.  Consistent with Morrison-Paul and Siegel

                                               
17We did combine our data with the real gross output series available from the BLS Employment Projections
division and estimated the regressions with gross output as the dependent variables and the same explanatory
variables.  While not the proper specification, the results were similar to those reported.
18Not surprisingly, the estimates from the aggregate regression are the least reasonable with a labor coefficient of
1.074 and a negative (though not significant) coefficient on non-computer capital.
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(1999), bias from aggregation of relations appears small.  When the aggregate regression is

compared, however, there are large changes in the estimated coefficients, suggesting the

aggregation of relations problem becomes large at the aggregate level.

(b) Extended Production Function

Table 5 reports estimates of the extended production function regressions in Equation (5).

The results, again except for the aggregate OLS regression, are generally well-behaved with a

coefficient on labor typically in the 0.5 range and mostly reasonable capital coefficients.  Again,

the SYS-GMM estimates appear the most reasonable, while the FE results appear biased

downward.

In terms of comparison across levels of aggregation and biases from aggregation of

relations, the computer coefficient is again quite stable across the industry and sector regressions

using all estimators.  The other capital coefficients show more variability.  The estimated

elasticity of structures, for example, increases from 0.096 in the OLS sector regression to 0.210

in the OLS industry regression and from 0.048 to 0.194 in the SYS-GMM regression.

To assess the aggregation in variables bias, we compare the results in Table 5 to those in

Table 4 and find evidence of an important problem.  That is, the estimated elasticities on the

different types of non-computer capital are quite different and it is inappropriate to impose a

common elasticity on all types of non-computer capital.19  The point estimates of the computer

elasticities, however, typically remain in the range of 0.20.  This suggests that any bias

introduced by incorrect restrictions on other forms of capital does not substantially change the

estimated elasticity of computers.

(c) Alternative Production Function

Table 6 presents estimates of Equation (9), which includes aggregate capital and two

share variables, as opposed to each type of capital separately.  As discussed above, Aizcorbe

(1990) shows this to be an equivalent representation of the production function if aggregation

across variables is valid.  Again, we report estimates from the OLS, FE, and SYS-GMM

estimators.

                                               
19Econometric tests of the null hypothesis of a common coefficient on all types of non-computer capital are reported
at the bottom of Table 5.
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The results are consistent with the earlier findings and mostly appear reasonable: labor

elasticities are in the 0.5 range, the capital elasticity is between 0.3-0.4 in the OLS and SYS-

GMM estimates, and the FE estimates appear biased downward.  These estimates are broadly

consistent with expected income shares.  As in the earlier specifications, the capital elasticity

drops in the FE regression and the aggregate regression appears the least reasonable with a large,

negative elasticity on capital and a labor elasticity that appears too large.

When comparing the sector and industry regressions, some estimated coefficients seem to

vary a great deal, while others do not.  For example, labor elasticity in the FE regression was

estimated at 0.04 at the sector level and 0.46 at the industry level.  In contrast, the computer

share coefficient varies little across levels of aggregation, but falls dramatically in the FE

regression.  This suggests that between industry rather than within industry variation is the

primary source of output variation associated with computers.

The results also imply that the composition of the capital stock matters with regard to

computers, but not necessarily with regard to equipment in general.  That is, a higher share of

equipment in the form of computers is typically associated with higher output, while a larger

share of capital in the form of equipment is not.  More formally, in the sector and industry

regressions, δ in Equation (9) is typically small and insignificantly different from zero, while γ is

typically positive and often significant.  The implied estimates δ and γ and the associated p-value

are reported in Table 6.20

Lehr and Lichtenberg (1999) estimate a similar specification and find results that are

broadly consistent.  Their coefficient estimates are not directly comparable, however, since they

do not include the equipment to capital ratio in their regression and estimate an approximation

without taking logs of the computer share.  Despite these differences, they also find that the share

of computers is positively and significantly related to output across a panel of firms in the late

1980s and early 1990s.

It is important to recognize that our evidence that computers appear more productive than

other forms of capital does not necessarily imply that computers earn excess returns.  In a

neoclassical framework, for example, an asset’s output elasticity equals its nominal income

share.  This income share is typically derived from a user-cost approach that includes tax factors,

                                               
20The p-value is associated with the null hypothesis that δ or γ is equal to zero.
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depreciation, capital gains/losses, and the acquisition price of the asset.  In the case of computer

equipment, rapid obsolescence and massive price declines yield a high user-cost, which makes a

high marginal product necessary simply to make the computer a worthwhile investment

Lichtenberg (1995) explicitly tests the hypothesis that computer equipment has excess

returns by comparing the ratio of marginal products to user-costs for different types of capital

and finds evidence of excess returns to computers.  While we do not perform this type of test,

one can get a rough sense by comparing the average income share reported in Jorgenson and

Stiroh (2000b) and Oliner and Sichel (2000) to our estimated elasticity.  Both studies use

aggregate data for the U.S. and report relatively small income shares: about 1.0% in Jorgenson

and Stiroh and 1.4% in Oliner and Sichel.  Both shares are considerably below our estimated

coefficient, although the results are not directly comparable since we do not have detailed capital

service data for all assets and the output concepts are not identical.

(d) Robustness Checks

One concern in estimating these types of regressions is measurement error.  The recent

divergence in productivity growth between manufacturing and non-manufacturing industries, for

example, has led some to believe that measurement problems lead output, and therefore

productivity, to be understated in certain industries.  Dean (1999), for example, concludes, “there

are important measurement problems in some service activities (pg. 24).”

These difficulties may reflect inadequate data, conceptual problems in defining service

sector output, or an inability to accurately decompose nominal changes into prices and quantities.

In the specific context of measuring the impact of computers, Siegel (1997) finds that computers

lead to both quality change and productivity growth, after accounting for potential measurement

errors.  Using a different framework, McGuckin and Stiroh (2000) conclude that measurement

error associated with computer investment may be contributing to an underestimate of aggregate

productivity growth.

To examine whether our results are robust to such potential problems, we split the

industry data into manufacturing and non-manufacturing industries.  Table 7 reports OLS results

for the simple production function and SYS-GMM estimators for all three specifications.  In all

cases, the coefficient related to computer capital is larger in the manufacturing regression, but

typically less precisely estimated.  This is similar to McGuckin and Stiroh (2000), but contrasts

Brynjolfsson and Hitt (1995) who report a larger estimated coefficient on computers in the



17

service sector compared to manufacturing.  If one believes that manufacturing output is better

measured than non-manufacturing, these results suggest that the estimates for all industries and

sectors may be understating the productive impact of computers.  The pattern of coefficients,

however, is similar to that found earlier, suggesting that the qualitative results are not being

driven by service sector mismeasurement.

 V. Conclusions

The purpose of this paper is to document the empirical importance of aggregation effects

in the context of estimating production functions that include computer capital as a distinct asset.

Drawing together the results from alternative specifications that were estimated at different

levels of aggregation, several conclusions stand out.

It is clear that the economy-wide specification provides very unstable results and gives a

misleading picture of computer productivity.  The elasticity of labor is often quite large and the

impact of computers was typically small and varies considerably across specifications at the

aggregate level.  In contrast, both the sector and the industry estimates show a very stable

estimated elasticity for computers, typically in the 0.15 to 0.20 range, across specifications in

OLS and SYS-GMM regressions.  Estimates are typically smaller in FE regressions, consistent

with previous findings of a downward bias in this type of estimate.  These findings also echo the

results of our earlier work in McGuckin and Stiroh (1998), which found that because computer

use was concentrated in a small number of industries, the impact was obscured at higher levels of

analysis.

The stability of the estimated impact of computers between the industry and sector

regressions and across specifications was somewhat surprising, but also reassuring.  Since these

estimates are robust to the specification and aggregation level, it suggests that computers are

having a real impact on output.  This does not mean, however, that aggregation of relations

problems are not important since the estimated elasticities of the non-computer aggregate,

particularly structures, varied substantially between the industry and sector regressions.  Thus,

empirical work must still be careful when choosing the level of aggregation.

The bias from aggregation in variables was also generally found to be important.  There

is wide variation in the productivity of different types of capital and it is inappropriate to include

a single capital index in many cases.  When included individually, structures showed a large and

significant elasticity, while the impact from other forms of non-computer equipment was harder
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to find.  The estimated computer elasticity, however, did not change when more disaggregated

capital variables were included, which suggests that the bias was not transmitted to all

coefficients.

These results show a large and robust elasticity of computer capital across a wide range

of specifications, estimation techniques, and aggregation levels.  Despite the clear presence of

other aggregation problems, our results suggest that computers are more productive than other

forms of capital.  This is entirely consistent with economic theory; computers must earn a high

gross rate of return to offset the rapid depreciation and capital losses.  These results support the

growing body of work at both the micro and the aggregate level that shows computers are indeed

an important source of growth and productivity.
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Growth in
Total Capital

Industry 1970 1980 1990 1996 1970-80 1980-90 1990-96 1970-96 1970-96

AGRICULTURE, FORESTRY & FISHING 0.000 0.011 0.020 0.016 22.77 20.11 15.36 19.93 0.96
Farms 0.000 0.002 0.004 0.002 0.00 20.26 8.13 15.71 0.59
Agricultural services, forestry and fishing 0.000 0.131 0.156 0.099 21.70 20.15 16.50 19.83 4.65

MINING 0.082 0.169 0.233 0.140 36.62 18.83 8.34 23.25 1.77
Metal mining 0.000 0.039 0.041 0.020 22.54 18.14 8.46 16.70 1.50
Coal mining 0.000 0.004 0.016 0.030 0.00 14.48 29.37 17.83 2.98
Oil and gas extraction 0.104 0.203 0.274 0.158 36.99 18.72 7.16 23.08 1.67
Nonmetallic minerals, except fuels 0.000 0.008 0.122 0.241 0.00 30.34 26.41 28.86 1.47

CONSTRUCTION 0.416 0.147 0.238 0.113 16.67 19.52 7.77 15.71 0.90
MANUFACTURING 0.905 0.926 1.758 1.747 27.61 23.58 19.77 24.25 2.27

DURABLE MANUFACTURING 1.146 1.346 2.291 2.097 28.94 22.40 18.17 23.94 2.21
Lumber and wood products 0.311 0.869 0.494 0.899 26.83 10.01 27.94 20.62 1.44
Furniture and fixtures 0.000 0.966 1.893 1.570 29.95 24.98 16.59 24.54 2.54
Stone, clay, and glass products 0.144 1.688 2.353 1.354 37.05 19.78 9.79 24.12 0.77
Primary metal industries 0.420 0.283 0.474 0.492 21.18 19.78 18.49 20.02 -0.15
Fabricated metal products 0.811 0.464 0.986 1.037 23.54 24.50 20.28 23.16 2.15
Industrial machinery and equipment 4.566 3.664 4.557 3.255 27.92 20.49 14.06 21.86 3.50
Electronic and other electric equipment 0.525 2.130 3.200 3.585 40.23 23.68 23.88 30.09 4.96
Transportation equipment 0.779 0.862 1.962 1.801 28.49 25.04 17.90 24.72 2.11
Instruments and related products 1.751 1.324 3.742 3.348 27.39 30.47 18.03 26.41 4.69
Miscellaneous manufacturing industries 0.751 0.685 1.519 2.034 15.15 23.79 24.43 20.61 1.95

NON-DURABLE MANUFACTURING 0.620 0.452 1.170 1.382 24.08 26.76 22.74 24.80 2.35
Food and Kindred Products 0.580 0.360 0.842 1.069 25.21 25.20 23.99 24.93 1.86
Tobacco products 0.000 0.527 1.128 1.318 12.70 24.80 19.14 19.35 3.68
Textile mill products 0.812 0.262 0.517 0.640 13.54 21.98 21.61 18.65 0.15
Apparel and other textile products 2.354 1.191 0.864 1.914 17.40 11.85 31.10 18.43 2.09
Paper and allied products 0.181 0.392 0.982 0.685 25.76 28.05 13.70 23.86 2.61
Printing and publishing 1.436 1.388 4.469 3.943 29.11 31.89 17.12 27.41 3.39
Chemicals and allied products 0.465 0.289 0.854 1.531 25.78 26.82 29.78 27.10 2.93
Petroleum and coal products 0.453 0.385 0.659 0.857 25.54 22.66 24.72 24.24 1.76
Rubber and miscellaneous plastics products 1.123 0.664 1.120 1.376 21.85 23.84 25.75 23.52 3.38
Leather and leather products 0.495 0.851 1.344 1.482 10.88 17.30 19.06 15.24 -0.64

TRANSPORTATION, COMM., & UTILITIES 0.068 0.106 0.332 0.300 24.59 27.77 18.55 24.42 2.07
Railroad transportation 0.012 0.013 0.023 0.009 17.37 20.26 4.92 15.61 -0.83
Local and interurban passenger transit 0.155 0.112 0.170 0.030 9.51 18.44 -10.77 8.27 -1.24
Trucking and warehousing 0.108 0.047 0.060 0.051 9.97 19.90 20.18 16.15 3.20
Water transportation 0.149 0.057 0.098 0.100 5.84 18.15 18.44 13.48 0.26
Transportation by air 0.430 0.438 0.869 0.404 25.16 26.31 10.36 22.19 3.24
Pipelines, except natural gas 0.054 0.050 0.026 0.198 11.16 2.13 51.93 17.09 1.09
Transportation services 0.214 0.163 1.261 0.316 13.49 36.78 2.88 20.00 2.24
Communications 0.141 0.153 0.441 0.575 29.79 28.12 24.73 27.98 4.54
Utilities 0.027 0.112 0.359 0.283 28.52 28.54 15.96 25.63 2.40

WHOLESALE TRADE 2.427 3.113 4.636 6.948 34.17 25.01 28.84 29.42 6.38
RETAIL TRADE 0.406 0.592 1.705 1.853 31.57 29.08 23.48 28.75 3.61

Notes:  Shares and growth rates are percentages.

Source: BEA (1998) and authors' calculations.

Table 1: Change in Computer Intensity by Major Sectors and Detailed Industries, 1970-1996

Nominal Computer Capital Share Real Computer Capital Growth Rates



Growth in
Total Capital

Industry 1970 1980 1990 1996 1970-80 1980-90 1990-96 1970-96 1970-96

FINANCE, INSURANCE & REAL ESTATE 0.977 1.322 2.277 2.285 32.10 27.07 21.33 27.68 4.39
Depository institutions 3.664 4.439 5.314 3.273 35.51 24.94 14.01 26.48 7.40
Non-depository; holding and investment offices 4.388 3.576 5.626 6.981 29.13 28.43 26.67 28.29 7.48
Security and commodity brokers 8.345 9.442 7.411 8.712 28.97 20.70 21.00 23.95 6.77
Insurance carriers 7.732 6.381 7.979 5.170 31.18 32.49 19.42 28.97 11.17
Insurance agents, brokers and services 11.521 8.572 5.062 4.295 29.11 10.41 16.10 18.91 3.24
Real estate 0.174 0.164 0.452 0.928 26.50 29.89 31.00 28.84 3.09

SERVICES 1.361 1.582 4.083 4.966 28.44 28.29 25.22 27.64 4.41
Hotels and other lodging places 0.031 0.236 0.338 0.167 29.10 23.07 8.98 22.14 2.74
Personal services 0.000 0.619 2.979 1.099 37.52 32.84 6.03 27.70 1.77
Business Services 4.408 12.458 20.406 36.25 27.63 29.46 31.37 5.34
Auto repair, services, and garages 0.106 0.970 3.870 0.907 35.51 34.09 3.18 27.50 5.22
Miscellaneous repair shops 0.000 0.986 2.660 2.454 29.54 27.42 20.22 26.33 3.16
Motion pictures 0.000 1.554 3.069 1.868 47.04 28.99 19.37 31.97 6.06
Amusement and recreation services 0.000 0.481 0.841 0.856 35.62 21.08 23.56 26.15 2.37
Health services 0.610 0.600 1.423 1.924 24.75 30.94 27.38 27.74 5.67
Legal services 6.877 2.199 7.869 5.852 19.08 35.82 12.89 24.09 4.74
Educational services 11.940 2.450 1.166 0.685 18.50 13.05 15.80 15.78 8.22
Other 3.636 2.446 4.936 5.849 20.92 25.46 23.96 23.37 4.97

PRIVATE BUSINESS SECTOR 0.550 0.678 1.575 1.847 29.97 26.17 22.96 26.89 2.90

Notes:  Shares and growth rates are percentages.

Source: BEA (1998) and authors' calculations.

Nominal Computer Capital Share Real Computer Capital Growth Rates

Table 1-continued: Change in Computer Intensity by Major Sectors and Detailed Industries, 1970-1996



Total
Value of 

Industry Computers Other Hi-Tech Other Equipment Structures Capital Stock

AGRICULTURE, FORESTRY & FISHING 0.02 0.87 41.76 57.38 366,430              
Farms 0.00 0.04 38.22 61.69 315,425              
Agricultural services, forestry and fishing 0.10 5.95 63.35 30.53 51,276                

MINING 0.14 1.89 16.88 81.05 436,641              
Metal mining 0.02 0.99 19.78 79.20 35,165                
Coal mining 0.03 0.42 33.89 65.67 36,171                
Oil and gas extraction 0.16 2.17 13.22 84.45 344,343              
Nonmetallic minerals, except fuels 0.24 1.34 43.03 55.42 20,745                

CONSTRUCTION 0.11 0.81 59.31 39.80 88,188                
MANUFACTURING 1.75 6.30 51.47 40.49 1,480,426           

DURABLE MANUFACTURING 2.10 5.98 51.71 40.23 759,300              
Lumber and wood products 0.90 2.05 47.03 50.05 29,331                
Furniture and fixtures 1.57 1.81 36.76 59.87 13,316                
Stone, clay, and glass products 1.35 4.94 51.33 42.41 43,403                
Primary metal industries 0.49 2.76 58.89 37.80 127,819              
Fabricated metal products 1.04 2.23 62.95 33.76 81,906                
Industrial machinery and equipment 3.26 6.61 51.76 38.33 128,598              
Electronic and other electric equipment 3.59 12.87 45.54 38.01 128,802              
Transportation equipment 1.80 3.23 54.43 40.55 139,315              
Instruments and related products 3.35 13.23 33.44 49.98 53,024                
Miscellaneous manufacturing industries 2.03 3.28 43.11 51.59 14,001                

NON-DURABLE MANUFACTURING 1.38 6.64 51.19 40.77 721,018              
Food and Kindred Products 1.07 4.64 49.47 44.86 145,868              
Tobacco products 1.32 3.47 46.96 48.27 9,182                  
Textile mill products 0.64 2.95 52.71 43.74 37,655                
Apparel and other textile products 1.91 2.81 39.85 55.41 13,332                
Paper and allied products 0.68 4.69 69.13 25.47 98,503                
Printing and publishing 3.94 9.66 42.69 43.72 60,044                
Chemicals and allied products 1.53 11.13 48.87 38.47 206,387              
Petroleum and coal products 0.86 5.16 41.35 52.64 92,578                
Rubber and miscellaneous plastics products 1.38 2.07 61.77 34.81 54,711                
Leather and leather products 1.48 0.84 31.12 66.51 2,629                  

TRANSPORTATION, COMM., & UTILITIES 0.30 12.42 23.81 63.51 2,301,741           
Railroad transportation 0.01 1.77 11.93 86.24 360,656              
Local and interurban passenger transit 0.03 6.56 21.39 72.00 19,912                
Trucking and warehousing 0.05 3.61 72.73 23.59 108,208              
Water transportation 0.10 4.04 76.74 19.10 36,002                
Transportation by air 0.40 7.94 72.31 19.36 110,141              
Pipelines, except natural gas 0.20 1.71 8.68 89.38 48,361                
Transportation services 0.32 12.16 71.34 16.20 42,660                
Communications 0.58 36.83 7.44 55.17 562,226              
Utilities 0.28 5.04 23.51 71.15 1,014,044           

WHOLESALE TRADE 6.95 10.34 33.21 49.47 402,858              
RETAIL TRADE 1.85 1.85 22.68 73.67 540,565              

Notes:  Shares are percentages and values are millions of current dollars.

Source: BEA (1998) and authors' calculations.

Table 2: Distribution of Capital within Major Sectors and Detailed Industries, 1996



Total
Value of 

Industry Computers Other Hi-Tech Other Equipment Structures Capital Stock

FINANCE, INSURANCE & REAL ESTATE 2.28 5.11 16.95 75.62 1,960,245           
Depository institutions 3.27 8.14 30.79 57.81 370,374              
Non-depository; holding and investment offices 6.98 11.52 55.51 26.02 151,641              
Security and commodity brokers 8.71 5.62 13.89 71.78 11,542                
Insurance carriers 5.17 8.79 27.36 58.67 180,296              
Insurance agents, brokers and services 4.29 6.79 29.91 59.01 6,449                  
Real estate 0.93 2.87 6.55 89.64 1,239,803           

SERVICES 4.97 8.83 30.19 56.06 754,670              
Hotels and other lodging places 0.17 1.28 9.20 89.37 127,093              
Personal services 1.10 6.31 28.96 63.63 26,266                
Business Services 20.41 14.20 37.01 28.34 126,464              
Auto repair, services, and garages 0.91 2.87 83.21 13.01 114,535              
Miscellaneous repair shops 2.45 2.13 59.37 36.00 11,987                
Motion pictures 1.87 23.21 22.24 52.73 29,366                
Amusement and recreation services 0.86 1.29 25.84 71.96 48,536                
Health services 1.92 14.30 12.64 71.16 153,883              
Legal services 5.85 11.48 26.79 55.87 18,922                
Educational services 0.69 1.46 6.93 91.00 18,221                
Other 5.85 12.56 18.01 63.60 79,647                

PRIVATE BUSINESS SECTOR 1.85 7.32 28.87 61.99 8,328,842           

Notes:  Shares are percentages and values are millions of current dollars.

Source: BEA (1998) and authors' calculations.

Table 2 - continued: Distribution of Capital within Major Sectors and Detailed Industries, 1996



Industry Nominal Value Percent of Total Nominal Value Percent of Total

AGRICULTURE, FORESTRY & FISHING 58 0.04 3,243 0.42
MINING 612 0.40 8,874 1.16
CONSTRUCTION 100 0.06 811 0.11
DURABLE MANUFACTURING 15,919 10.35 61,278 8.02
NON-DURABLE MANUFACTURING 9,965 6.48 57,829 7.57
TRANSPORTATION, COMM., & UTILITIES 6,905 4.49 292,832 38.35
WHOLESALE TRADE 27,991 18.20 69,677 9.12
RETAIL TRADE 10,018 6.51 20,009 2.62
FINANCE, INSURANCE & REAL ESTATE 44,789 29.11 144,988 18.99
SERVICES 37,475 24.36 104,160 13.64

PRIVATE BUSINESS SECTOR 153,833 100.00 763,700 100.01

Source: BEA (1998) and authors' calculations.

Table 3: Distribution of Computer and High-Tech Capital Across Major Sectors, 1996

Computer Capital High-Tech Capital

Notes: Shares are percentages and values are millions of current dollars. High-tech capital includes computers, scientific instruments,
photocopy equipment, and communications equipment.



ln(L) 1.074 *** 0.511 *** 0.493 *** 0.051 0.468 *** 0.554 *** 0.340 ***
(0.104) (0.025) (0.020) (0.075) (0.062) (0.053) (0.114)

ln(Kc) 0.052 ** 0.188 *** 0.178 *** 0.046 -0.018 0.171 *** 0.305 ***
(0.018) (0.016) (0.010) (0.038) (0.018) (0.064) (0.084)

ln(Kn) -0.227 0.154 *** 0.256 *** 0.030 -0.122 ** 0.123 -0.020

(0.291) (0.033) (0.015) (0.097) (0.056) (0.120) (0.081)

Year 0.003
(0.003)

R2 0.99 0.89 0.85 0.87 0.50
No. of Obs. 17 170 935 170 935 160 880

Notes: All regressions include year dummy variables, except for aggregate OLS. Robust standard errors are in parentheses. R2 is

adjusted-R2 for OLS and within-R2 for fixed effects. Dependent variable is log of real value-added; L is labor; Kc is computer

capital; Kn is non-computer capital.  ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively.

OLS Fixed Effects SYS-GMM

Table 4: Simple Production Function Regressions, 1980-96

Aggregate Sector Industry Sector Industry Sector Industry



ln(L) 1.299 *** 0.533 *** 0.505 *** -0.001 0.465 *** 0.557 *** 0.485 ***
(0.126) (0.028) (0.021) (0.089) (0.060) (0.072) (0.102)

ln(Kc) 0.073 * 0.161 *** 0.142 *** 0.069 * 0.001 0.132 * 0.177 **

(0.034) (0.024) (0.013) (0.037) (0.019) (0.073) (0.076)

ln(Kh) -0.028 0.057 0.070 *** 0.122 *** 0.071 *** 0.123 0.105 *

(0.388) (0.044) (0.012) (0.041) (0.023) (0.098) (0.061)

ln(Ko) -0.752 *** -0.050 -0.015 -0.190 ** -0.223 *** -0.105 -0.170 **

(0.184) (0.051) (0.013) (0.088) (0.060) (0.105) (0.078)

ln(Ks) -0.441 0.096 * 0.210 *** 0.246 ** 0.059 0.048 0.194 **

(0.609) (0.056) (0.017) (0.115) (0.070) (0.203) (0.075)

Year 0.011 **
(0.004)

R2 0.99 0.88 0.86 0.89 0.52
No. of Obs. 17 170 935 170 935 160 880

p-value 0.013 0.116 0.000 0.019 0.000

Sector Industry

Table 5: Extended Production Function Regressions, 1980-96

Notes: All regressions include year dummy variables, except for aggregate OLS. Robust standard errors are in parentheses. R2 is

adjusted-R2 for OLS and within-R2 for fixed effects. Dependent variable is log of real value-added; L is labor; Kc is computer capital;

Kh is other high-tech capital; Ko is other equipment capital; and Ks is structures. p-value is associated with null hypothesis of equal

elasticities for all types of non-computer capital. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level,
respectively.

OLS Fixed Effects SYS-GMM

Aggregate Sector Industry Sector Industry



Aggregate Sectors Industry Sectors Industry Industry

ln(L) 1.342 *** 0.539 *** 0.512 *** 0.040 0.463 *** 0.577 *** 0.484 ***
(0.094) (0.032) (0.021) (0.078) (0.061) (0.102) (0.086)

ln(K) -1.056 *** 0.318 *** 0.417 *** 0.217 ** -0.035 0.344 *** 0.281 ***
(0.235) (0.031) (0.013) (0.098) (0.057) (0.116) (0.085)

ln(Ke/K) -0.503 *** 0.061 0.006 -0.256 ** -0.313 *** -0.007 -0.063
(0.134) (0.082) (0.032) (0.103) (0.086) (0.273) (0.121)

ln(Kc/Ke) 0.092 *** 0.181 *** 0.182 *** 0.066 * 0.003 0.141 ** 0.231 ***
(0.015) (0.016) (0.010) (0.039) (0.020) (0.058) (0.056)

Year 0.015 ***
(0.004)

Implied δ 0.476 0.191 0.015 -1.179 8.921 -0.020 -0.224
p-value 0.001 0.454 0.841 0.009 0.570

Implied γ -0.087 0.568 0.437 0.303 -0.078 0.410 0.821
p-value 0.000 0.000 0.000 0.128 0.901

R2 0.99 0.89 0.86 0.88 0.51
No. of Obs. 17 170 935 170 935 160 880

Table 6: Alternative Production Function Regressions, 1980-96

Sectors

Notes: All regressions include year dummy variables, except for aggregate OLS. Robust standard errors are in parentheses. R2 is 

adjusted-R2 for OLS and within-R2 for fixed effects. Dependent variable is log of real value-added; L is labor; K is total capital; Ke 

is equiptment capital; Kc is computer capital. Implied d and implied g are from Equation (9) and p-value is associated with the null

hypothesis that the implied coefficient equals zero.  ***, **, and * denote statistical significance at the 1%, 5%, and 10% level.

OLS Fixed Effects SYS-GMM



ln(L) 0.128 0.565 *** 0.178 0.412 *** 0.197 0.582 *** 0.127 0.602 ***
(0.205) (0.058) (0.195) (0.085) (0.155) (0.085) (0.152) (0.089)

ln(K) 0.384 *** 0.265 ***
(0.082) (0.085)

ln(Kc) 0.262 ** 0.164 *** 0.458 ** 0.228 *** 0.191 0.143 **
(0.112) (0.032) (0.232) (0.066) (0.126) (0.061)

ln(Kn) 0.299 *** 0.261 *** 0.038 0.098
(0.108) (0.066) (0.231) (0.082)

ln(Kh) 0.365 *** 0.054
(0.140) (0.069)

ln(Ko) 0.147 -0.135 *
(0.209) (0.073)

ln(Ks) -0.398 0.231 ***
(0.328) (0.066)

ln(Ke/K) 1.512 *** -0.266 **
(0.528) (0.132)

ln(Kc/Ke) 0.358 ** 0.169 ***
(0.159) (0.046)

Notes: All regressions includes year dummy variables. Robust standard errors are in parentheses. Variables are defined in Tables 4-6. ***, **,
and * denote statistical significance at the 1%, 5%, and 10% level.

Mfg Non-Mfg

Table 7: Comparison of Manufacturing and Non-Manufacturing Results, 1980-96

Non-Mfg Mfg Non-Mfg Mfg
Simple - SYS-GMM Extended - SYS-GMM Alternative - SYS-GMM

Mfg Non-Mfg
Simple - OLS


